Hominoid fission of chromosome 14/15 and the role of segmental duplications.
نویسندگان
چکیده
Ape chromosomes homologous to human chromosomes 14 and 15 were generated by a fission event of an ancestral submetacentric chromosome, where the two chromosomes were joined head-to-tail. The hominoid ancestral chromosome most closely resembles the macaque chromosome 7. In this work, we provide insights into the evolution of human chromosomes 14 and 15, performing a comparative study between macaque boundary region 14/15 and the orthologous human regions. We construct a 1.6-Mb contig of macaque BAC clones in the region orthologous to the ancestral hominoid fission site and use it to define the structural changes that occurred on human 14q pericentromeric and 15q subtelomeric regions. We characterize the novel euchromatin-heterochromatin transition region (∼20 Mb) acquired during the neocentromere establishment on chromosome 14, and find it was mainly derived through pericentromeric duplications from ancestral hominoid chromosomes homologous to human 2q14-qter and 10. Further, we show a relationship between evolutionary hotspots and low-copy repeat loci for chromosome 15, revealing a possible role of segmental duplications not only in mediating but also in "stitching" together rearrangement breakpoints.
منابع مشابه
Segmental Duplications as a Complement Strategy to Short Tandem Repeats in the Prenatal Diagnosis of Down Syndrome
Background: Quantitative fluorescence-polymerase chain reaction (QF-PCR) is an inexpensive and accurate method for the prenatal diagnosis of aneuploidies that applies short tandem repeats (STRs) as a chromosome-specific marker. Despite its apparent advantages, QF-PCR is not applicable in all cases due to the presence of uninformative STRs. This study was carried out to investigate the efficienc...
متن کاملRecurrent duplication-driven transposition of DNA during hominoid evolution.
The underlying mechanism by which the interspersed pattern of human segmental duplications has evolved is unknown. Based on a comparative analysis of primate genomes, we show that a particular segmental duplication (LCR16a) has been the source locus for the formation of the majority of intrachromosomal duplications blocks on human chromosome 16. We provide evidence that this particular segment ...
متن کاملDivergent origins and concerted expansion of two segmental duplications on chromosome 16.
An unexpected finding of the human genome was the large fraction of the genome organized as blocks of interspersed duplicated sequence. We provide a comparative and phylogenetic analysis of a highly duplicated region of 16p12.2, which is composed of at least four different segmental duplications spanning in excess of 160 kb. We contrast the dispersal of two different segmental duplications (LCR...
متن کاملThe hominoid-specific gene TBC1D3 promotes generation of basal neural progenitors and induces cortical folding in mice
Cortical expansion and folding are often linked to the evolution of higher intelligence, but molecular and cellular mechanisms underlying cortical folding remain poorly understood. The hominoid-specific gene TBC1D3 undergoes segmental duplications during hominoid evolution, but its role in brain development has not been explored. Here, we found that expression of TBC1D3 in ventricular cortical ...
متن کاملA High-Resolution Map of Synteny Disruptions in Gibbon and Human Genomes
Gibbons are part of the same superfamily (Hominoidea) as humans and great apes, but their karyotype has diverged faster from the common hominoid ancestor. At least 24 major chromosome rearrangements are required to convert the presumed ancestral karyotype of gibbons into that of the hominoid ancestor. Up to 28 additional rearrangements distinguish the various living species from the common gibb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genome research
دوره 23 11 شماره
صفحات -
تاریخ انتشار 2013